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Uh, what’s a braid again?

Geometrically, a braid is a group of ”strings” which pass from
the top of the unit square to the bottom in a monotonic
manner, and which permute the set {1, . . . , n} in some manner
for some n ∈ N.

This is a braid on three strings
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Algebraically describing a braid

As you might remember, the set of braids on n strings, called
Bn, forms a group, where the group operation is composition of
braids.

+ =

Addition of Braids
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Group representation

The group Bn has the group presentation
〈σ1, . . . , σn−1 | σiσj = σjσi when |i − j | > 2|,
σiσi+1σi = σi+1σiσi+1〉. Here, σi refers to the braid in which
every strand is straight except the ith strand crosses over the
i + 1th strand. Here are the generators of B4 as an example:

σ1 σ2 σ3

σ−1
1 σ−1

2 σ−1
3
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Alexander’s Theorem
We can now discuss the notion of the closure of a braid. The
closure of a braid is the link obtained by drawing an arc
connecting the ith spot on the bottom with the ith spot on the
top, as follows.

The Braid
σ1σ

−1
3 σ2σ

−1
3 σ1

→

Its closure
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Alexander’s Theorem (continued)

A few weeks ago, the following theorem was proven:

Important Theorem of Alexander

Any link is the closure of some braid

Immediate Observation
The braids σ1, . . . , σi all have isotopic closures

Natural Follow-Up Question

When do two braids have isotopic closures? Is there a
necessary AND sufficient way to characterize all such
equivalence classes of braids?
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Markov’s Theorem

Markov’s theorem characterizes braids which have isotopic
closures using so-called ”Markhov Moves,” which transform
one braid into another (not necessarily with the same number
of strands). Before we get into that though, we shall take the
following theorem for granted.

Black Box Theorem
Two braids β, β′ ∈ Bn are conjugate, meaning there exists
some γ ∈ Bn such that γ−1βγ = β′ if and only if they have
closures which are isotopic in the solid torus V.

At first glance, this would seem to solve the issue. However,
there are some wrinkles.
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Wrinkle 1

Consider the following braids:

Exercise (easy)

Show that these braids have closure which are isotopic in R3

Exercise (very easy)

Show that these braids are not conjugate in B3
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Wrinkle 2

The theorem specifies that the closures are isotopic in the solid
torus V . Consider the following braids and their closures in the
torus.

Exercise (easy)

Show the closures of these two braids are isotopic in R3

Exercise
Show the closures of these two braids are not isotopic in V
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Markov Moves

As we can see, conjugacy is not quite enough. I will now
introduce 2 ”moves” (and their inverses) which can be
performed on a braid and produces an isotopic closure.
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M1

For β, γ ∈ Bn, the transformation β → γβγ−1 is called the first
Markov Move, and is denoted M1. As we can see, this is
simply the conjugation of β by γ. We can see by the first black
box that if two braids are M1 equivalent, then they have
isotopic closures.
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M2
For the second Markov move, we define M2 as the
transformation Bn 3 β → σεn+1ι(β) ∈ Bn+1, where ε = ±1 and
ι : Bn → Bn+1 is the inclusion mapping (basically adding
another string on the right).

Before M2 After M2

Exercise (easy)

Show that these two braids have isotopic closures.
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M-equivalence

If two braids β ∈ Bi , β
′ ∈ Bj , (with i and j not necessarily the

same), are M-equivalent, this means that β can be obtained
from β′ by a finite sequence of moves M1, M2, M1−1 and
M2−1. We denote this β ∼ β′.

Exercise (easy)

Show that a move of type M1−1 is also of type M1. Is this the
same for M2−1 and M2? (Obviously not!)

Exercise (easy)

Show that ∼ is an equivalence relation over ∪̇NBn = B, the
disjoint union of all braid groups on finitely many strings.

Exercise (less easy)

Show that σ1 ∼ σ−11 ∈ B2 without using Markov’s Theorem.
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Markov’s Theorem

Very Important Theorem of Markov

Two braids (possibly with different numbers of strings) have
isotopic closures in Euclidean space R3 if and only if these
braids are M-equivalent.

For the rest of this presentation, I will be giving you the broad
strokes of the proof of Markov. It will proceed in the following
fashion.
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Sketch of proof
1 First, we will introduce a third Markov Move, M3, which

is a composition of M1 and M2.

2 Next, we will use the first black box to reformulate
Markov’s theorem in terms of closed braids in the solid
torus V , and hence reduce the proof of Markov’s theorem
to the proof of Lemma 1.

3 Then, we will reformulate Lemma 1 in terms of closed
braid diagrams in an annulus, and hence to prove Lemma
1 it will suffice to prove another lemma, Lemma 2.

4 We shall then reduce Lemma 2 to a claim formulated in
terms of so-called 0-diagrams in R2 representing isotopic
oriented links in R3, hence reducing Lemma 2 to Lemma 3.

5 We shall then reduce Lemma 3 to Lemmas 4 and 5.

6 We shall then sketch a proof of Lemma 4.

7 At the end, we will decide that enough is enough and take
Lemma 5 for granted, hence proving the theorem.

Let us begin.
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M3

If β ∈ Bn and α ∈ Bm, then β ⊗ α ∈ Bn+m is defined as the
braid consisting of β and α next to each other with no mutual
crossings. Here is an example:

β ∈ B4 α ∈ B3
β ⊗ α ∈ B7
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M3 (continued)

We see that by definition, M2 transforms a braid β ∈ Bn into
σεn(β ⊗ 11), with ε = ±1. Define M3 as transforming β ∈ Bn

into σε1(11 ⊗ β). Once again, here is an example for clarity:

β ∈ B4 After M2 After M3
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M3 (continued) (continued)

It is the case that M3 expands as a composition of the moves
M1 and M2, and hence M1,M2,M3 generate the same
equivalence relation

Exercise (pretty dang hard)

Let ∆n = (σ1σ2 . . . σn−1)(σ1σ2 . . . σn−2) . . . (σ1σ2)σ1 ∈ Bn

(this can be obtained from the trivial braid 1n by a half-twist
achieved by keeping the top of the braid fixed and turning over
the row of the lower ends by an angle of π). Using the fact
that, for all n ≥ 1 and i = 1, . . . , n − 1, we have
∆nσi∆

−1
n = σn−i ∈ Bn, deduce that the above assertion is true.

Hint: The punchline is that

σε1(11 ⊗ β) = ∆−1n+1σ
ε
n(∆nβ∆−1n ⊗ 11)∆n+1
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Reduction to Lemma 1

We will reformulate Markov’s theorem in terms of closed braids
in the solid torus V ⊂ R3. We denote the closure of a braid β
as β̂. Let M̂2 be a transformation on the set of closed braids in
V which replaces β̂ with ˆσεn(β ⊗ 11), which is the closure of β
with an M2 move applied to it. Define M̂3 similarly. By the
first black box, we only need to justify the following assertion
to prove Markov’s Theorem:

Lemma 1
Two closed braids in V representing isotopic oriented links in

R3 can be related by a sequence of moves M̂2
±1

, M̂3
±1

, and
isotopies in V .

We have essentially used the black box to replace M1 with
isotopies in V .
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Reformulation of Lemma 1

We will now reformulate Lemma 1 in terms of closed braid
diagrams in the annulus Ṽ = S1 × [0, 1] ⊂ R2. Define M̃2 as a
transformation which replaces the diagram β̃ ⊂ Ṽ , which is the
diagram of β̂, with ˜σεn(β ⊗ 11), which is the diagram of β̂ after
an M̂2 move. M̃3 is defined similarly. The reason we want to
think about the diagrams of braid closures instead of the braid
closures themselves (a mildly subtle distinction), is to introduce
what are called the ”braidlike Reidemeister moves” Ωbr

2 , which
is essentially the second Reidemeister move but when the
orientations of both strands coincide and Ωbr

3 , which is
essentially the third Reidemeister move but when the
orientations of all three strands coincide.
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Reformulation of Lemma 1
(continued)

Lemma 2
Two closed braid diagrams in an annulus Ṽ ⊂ R2 representing
isotopic oriented links in R3 can be related by a sequence of

moves (Ωbr
2 )±1, (Ωbr

3 )±1, M̃2
±1
, M̃3

±1
, and isotopies in the

class of oriented link diagrams in Ṽ .



Markov’s
Theorem

Group 3

Review

Alexander’s
Theorem

Preliminaries

Black Box 1

Wrinkles

Markov Moves

Move 1

Move 2

M-equivalence

Markov’s
Theorem

Sketch of proof

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Now, what is a 0-diagram?

You may remember Vlad’s talk near the beginning of Knots
and Graphs where he defined smoothings and Seifert Circles. If
you don’t remember, here is a short review:

Definition
Every crossing on a knot diagram looks locally like the braid σ1
or σ−11 . A smoothing replaces it with 12, the trivial braid in B2.
After performing a smoothing at every crossing of D, we end
up with a set of non-intersecting circles. These are called the
Seifert Circles of D. Two concentric Seifert Circles are called
compatible if their orientations do not coincide, and two
non-concentric Seifert Circles are called compatible if their
orientations do coincide. Otherwise, they are called
incompatible. The height, h(D) of a knot diagram is the
number of compatible pairs of Seifert Circles it has.
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Examples 1

This is what a smoothing looks like
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Examples 2

h(D) = 0. However,
this is not a 0-diagram

h(D) = 2 h(D) = 0. This is in
fact a 0-diagram
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Examples 3

Note that Ωbr
2 and Ωbr

3 take 0-diagrams to 0-diagrams

D
D after an application
of Ωbr

2
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Examples 4 (Illustrations courtesy
of Hannah Johnson)

D
D after an application
of Ωbr

3

Exercise (easy)

Show that the four diagrams above are in fact 0-diagrams
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Reidemeister 1
Usually the first Reidemeister move does not take 0-diagrams
to 0-diagrams. However, there are two special cases in which it
does, which we call Ωint

1 and Ωext
1 . In the former, a loop is

added on the interior of the innermost Seifert Circle, and in the
latter a loop is added on the outermost Seifert Circle.

D
D after an application
of Ωint

1 and Ωext
1
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Reidemeister 1 (continued)

Exercise (easy)

Show that Ωint
1 and Ωext

1 take 0-diagrams to 0-diagrams. For
Ωext
1 you can let the diagram be on S2 = R2 ∪ {∞}.

You’ve probably noticed that M̃2 = Ωint
1 and M̃3 = Ωext

1
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What was the point of literally any
of this?

I’m glad you asked.

Exercise (easy)

Convince yourself that every braid diagram is a 0-diagram.

We will now use the catch-all term Ω move to mean one of the
following:

1 Ωbr±1

2

2 Ωbr±1

3

3 Ωint±1

1

4 Ωext±1

1

5 An isotopy in R2
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Lemma 3

Lemma 3
Two 0-diagrams in R2 representing isotopic oriented links in R3

can be related by a sequence of Ω-moves.

Lemma 3 implies Lemma 2 (which implies Lemma 1 which
implies Markov’s Theorem when combined with the black box).

Exercise (easy)

Why?
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Lemmas 4 and 5
We’re almost there, so don’t despair! We know that Lemma 3
starts a sort of chain reaction which ends in Markov’s Theorem.
Lemma 4 further reduces the proof of Markov’s theorem to a
question about bendings, which you also may remember from
Vlad’s presentation.

Definition
Suppose you have a knot diagram D, and suppose you have
two edges which border the same face of D and are part of
different Siefert Circles. Then a bending is taking a subarc of
one edge and pushing it over the other using the second
Reidemeister move.

This is a bending
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Lemma 4

Lemma 4
Let C, C′ be 0-diagrams in R2 representing isotopic oriented
links in R3. Then there is a sequence of 0-diagrams
C = C1, C2, . . . , Cm = C′ such that for all i = 1, 2, . . . ,m − 1,
the diagram Ci+1 is obtained from Ci by an Ω-move, or by a
sequence of bendings, tightenings, and isotopies in the sphere
S2 = R2 ∪ {∞}.
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Proof Sketch of Lemma 4

Because C and C′ represent isotopic links, they can be related
by a finite sequence of transformations consisting of the
following oriented Reidemeister moves:

(a) Ω±11

(b) (Ωbr
2 )±1, (Ωbr

3 )±1, or isotopies in R2

(c) nonbraidlike moves Ω±12
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Moves of type (b)
Let g be a move of type (b) in the sequence which is applied to
a link diagram D with positive height.

Exercise
Show that h(D) = h(g(D)), and show that because the height
is greater than zero, there is a bending, r . More importantly,
show that r and g commute.

We thus see that g(d) = r−1gr(D). So then, we can surround
g with a sequence of bendings and tightenings, so the
transformation D → g(D) consists of a sequence of bendings
and tightenings and one move of type (b), which we call g ′,
such that g ′ is performed on a link of height zero, which we
call D ′. If all of the Seifert circles of D ′ are oriented
counterclockwise, then D ′ is a 0-diagram (think about it), and
g ′ is an Ω-move. If they are oriented clockwise, then g ′ can be
expanded as a composition of an isotopy of S2 which
transforms D ′ into a 0-diagram, an Ω-move, and the inverse
isotopy.



Markov’s
Theorem

Group 3

Review

Alexander’s
Theorem

Preliminaries

Black Box 1

Wrinkles

Markov Moves

Move 1

Move 2

M-equivalence

Markov’s
Theorem

Sketch of proof

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Moves of type (c)

I will show that moves of type (c) consist of a series of bendings
and tightenings. First, if a nonbraidlike move Ω±12 is performed
on two distinct Seifert circles, this is by definition a bending. If
it is performed on only one Seifert Circle, then it expands as
two Ω1± moves, a bending, and a tightening, as follows:



Markov’s
Theorem

Group 3

Review

Alexander’s
Theorem

Preliminaries

Black Box 1

Wrinkles

Markov Moves

Move 1

Move 2

M-equivalence

Markov’s
Theorem

Sketch of proof

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Expansion of Ω±1
2

An expansion of Ω±1
2

So to show that moves of type (c) are a sequence of either
bendings and tightenings and isotopies on R2 or a sequence of
Ω-moves on 0-diagrams, we only need to show that moves of
type (a) are.
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Moves of type (a)

Exercise (pretty dang hard)

Show that the move Ω±11 expands as a sequence of bendings,
tightenings, isotopies of S2, or Ω-moves on 0-diagrams
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The End

The following Lemma, along with Lemma 4, implies Lemma 3.

Lemma 5
Two 0-diagrams in R2 related by a sequence of bendings,
tightenings, and isotopies in S2 can be related by a sequence of
Ω-moves

You’ll just have to trust me on this one.
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Conclusion
To sum up, we have that Lemma 5 and 4 imply that any two
0-diagrams representing isotopic oriented links in R3 can be
related by a sequence of Ω-moves, which is Lemma 3. This
implies Lemma 2, which is that two closed briad diagrams in an
annulus can be related by a sequence of moves

(Ωbr
2 )±1, (Ωbr

3 )±1, M̃2
±1
, M̃3

±1
, and isotopies in the class of

oriented link diagrams in that annulus. This implies Lemma 1,
which says that two closed braids in the solid torus V
representing isotopic oriented links in R3 can be related by a

sequence of moves M̂2
±1
, M̂3

±1
, and isotopies in V . This,

along with the black box, which states that braids with closures
which are isotopic in V are conjugate, implies Markov’s
theorem.

Exercise (highly non-trivial)

Determine a simple way of determining if two braids are
M-equivalent, and hence if two knots are isotopic.
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Any Questions?
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